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1 Free Entry

Although Proposition 2 establishes that the equilibrium is efficient for any arbitrary ratio of buy-
ers to sellers, a traditional concern in much of the search literature is whether efficiency is also
achieved when this ratio is determined endogenously. To address this issue, suppose that sellers
can freely enter the market by paying a cost k, as in standard search models (see, e.g., Pissarides,
1985). The planner will then choose the measure of sellers µS to maximize net social surplus,

max
µS∈(0,∞)

µS

[
S

(
µB
µS

)
− k
]
, (1)

while the equilibrium measure of sellers follows from the indifference condition

R

(
r∗, t∗,

µB
µS

)
− k = y. (2)

The following lemma states that the market tightness achieved in equilibrium indeed coincides
with the solution to the planner’s problem.

Lemma A1. The market equilibrium with free entry is constrained efficient.
∗The views expressed here are those of the authors and do not necessarily reflect the views of the Federal Reserve

Bank of Philadelphia or the Federal Reserve System.
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Proof. The proof resembles Lester et al. (2013) and Albrecht et al. (2014). The equilibrium
measure of sellers is determined by the free entry condition (2). Since S (λ) = R (r∗, t∗, λ) +

λU (r∗, t∗, λ)− y, this condition is equivalent to

S

(
µB
µS

)
− k =

µB
µS
U

(
r∗, t∗,

µB
µS

)
. (3)

The efficient measure of sellers follows from the first-order condition of net social surplus, de-
scribed in (1), with respect to µS . After simplification, this yields

S

(
µB
µS

)
− k =

µB
µS
S ′
(
µB
µS

)
. (4)

Since S ′
(
µB
µS

)
= U

(
r∗, t∗, µB

µS

)
, it follows that the solution to (3) solves (4). �

This extends some of the results of Albrecht et al. (2012, 2014) to arbitrary meeting technolo-
gies. Clearly, our results regarding the importance of meeting fees and (invariance of) the meeting
technology are robust to endogenizing the measure of sellers, as they hold for arbitrary values of
the buyer-seller ratio.

2 Necessity of Meeting Fees

Proposition 3 establishes that all equilibria must be payoff-equivalent to the one with second-price
auctions and meeting fees. In this proposition, payoff-equivalence concerns the expected payoffs
and not the realized payoffs, as it is straightforward to change the latter while keeping the former
the same, e.g. by changing the auction format. This observation may raise the question whether
one can construct an equilibrium mechanism in which the meeting fees/subsidies are replaced by
an extra payment by/to the trading buyer, such that buyers who do not trade receive a zero payoff,
even when the meeting technology is not invariant. Lemma A2 establishes that this is not feasible.
Before presenting the formal argument, we sketch the intuition.

We know that any mechanism that is chosen in equilibrium has to implement the planner’s
solution, and it has to be payoff equivalent to the mechanism we describe. This puts a lot of
structure on the mechanism: it pins down the probability that a buyer is awarded the good, and it
pins down the expected transfer he pays. Suppose we divide the game into three stages: at stage
1, buyers choose a seller; at stage 2, buyers arrive and are potentially asked to pay a meeting fee
(or receive a subsidy); and at stage 3, buyers learn their type and report it, whereupon the good is
allocated and additional transfers occur. Our mechanism specifies that all buyers pay t at stage 2,
and then a second price auction occurs at stage 3. The question can then be phrased: is there an
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alternative mechanism with no transfers at stage 2, and only a transfer between the seller and the
buyer who receives the good at stage 3?

Loosely speaking, the reason the answer is “no” is that transfers at stage 3 have to respect
both an individual rationality (or participation) constraint and an incentive compatibility (or truth-
telling) constraint. If the seller did not charge t at stage 2, he would have to charge higher prices
at stage 3; otherwise his revenue would be different, which violates payoff-equivalence. However,
he cannot raise prices on only buyers who report high valuations, as this would violate incentive
compatibility. Therefore, he would have to raise prices on all buyers, but this would violate the
participation constraint of buyers with valuations very close to y. Hence, the seller must extract
rents at stage 2; he cannot derive a pricing scheme that extracts the same rents but still respects the
buyers’ IR and IC constraints.

Lemma A2. All equilibrium mechanisms must include a transfer, (in expectation) equal to t∗,

which is paid by/to each of the buyers who arrive at a seller before they learn their valuations

Proof. As a first step, consider a mechanism {φn(x), τn(x)} that assigns a probability of trade
φn(x) in exchange for a transfer τn(x) to an agent who reports being of type x when there are n
buyers participating in the mechanism.1 Once a buyer has learned his type, x, he reports a valuation
x′ which maximizes

φn (x′)x− τn (x′) . (5)

The incentive compatibility (or truth-telling) constraint then requires

φ′n (x)x− τ ′n (x) = 0. (6)

Hence,

τn (x) =

∫ x

y

τ ′n (x̃) dx̃+ C0 =

∫ x

y

x̃dφn (x̃) + C0

= φn (x)x− yφn (y)−
∫ x

y

φn (x̃) dx̃+ C0

= φn (x)x−
∫ x

y

φn (x̃) dx̃+ C1, (7)

for constants C0 and C1, where the second equality follows from integration by parts. Combining
(5) and (7) yields ∫ x

y

φn (x̃) dx̃− C1. (8)

1This representation of a mechanism constitutes a slight abuse of notation whereby, e.g., φn(x1) =∫
. . .
∫
φ(x1, x2, . . . , xn, n)dF (x2) . . . dF (xn), where φ(x1, . . . , xn, n) is defined in the main text.

3



Hence, in any incentive compatible mechanism, the expected payoff to a buyer with valuation x is
completely determined by the probability of trade, φn(x), and a constant C1.

Next, as a second step, we will show that both the probabilities of trade and the constant C1 are
uniquely determined in any equilibrium of our game. To see this, first note that any equilibrium
mechanism must be constrained efficient (Proposition 2 in the text), which implies that the good
must be allocated to the agent who values it most. Hence,

φn(x) =

F n−1(x) if x ≥ y

0 otherwise.
(9)

Substituting (9) into (8) and taking expectations over n and x, we find that the ex ante expected
utility of a buyer is

U =
∞∑
n=1

Qn (λ)

[∫ x

x

∫ x

y

F n−1 (x̃) dx̃dF (x)− C1

]
. (10)

By Proposition 3, U = Ū(r∗, t∗,Λ) in any equilibrium, which implies that C1 is also uniquely
determined. Indeed, in our mechanism, C1 = t, the meeting fee.

Finally, as a last step, consider an equilibrium of our game in which C1 = t > 0. Moreover,
suppose we decompose C1 = Ca

1 +Cb
1, where Ca

1 denotes any fees that are paid before buyers learn
their type, and Cb

1 are transfers made after reporting x. The individual rationality (or participation)
constraint of a buyer with valuation x is given by∫ x

y

φn (x̃) dx̃− Cb
1 ≥ 0. (11)

Since this constraint must hold for all x ∈ [y, x], it follows that Cb
1 = 0 in every equilibrium. �

3 Restrictions on M

Our assumptions about Pn (λ) and m (z;λ) impose a number of restrictions on M (·).2

(i) m being a probability-generating function requires that M is an analytic function.3

(ii) 1
n!

∂n

∂zn
m (0;λ) ∈ [0, 1] for all n and all λ requires that (−λ)n

n!
M (n) (λ) ∈ [0, 1] for all n and λ;

(iii) m (1;λ) = 1 for all λ requires that M (0) = 1;
2To keep notation concise, we write “all λ” instead of “all λ ∈ (0,∞)”, “all n instead of “all n ∈ N0”, and “all z”

instead of “all z ∈ [0, 1)”.
3Probability-generating functions are analytic functions (Sachkov, 1997).
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(iv) mz (1;λ) ∈ [0, λ] for all λ requires that M ′ (0) ∈ [−1, 0];

(v) mλ (z;λ) < 0 for all z and all λ requires that M ′ (λ) < 0 for all λ;

(vi) mλλ (z;λ) > 0 for all z and all λ requires that M ′′ (λ) > 0 for all λ.

Jointly, these restrictions completely characterize the set of feasible M (·). However, a tighter
characterization is possible. For example, restriction (ii) can be tightened as follows

(ii′) M satisfies (−λ)n

n!
M (n) (λ) ∈ (0, 1) for all n and λ.

Proof. We provide a proof by contradiction. Suppose that there exist a n̂ ∈ N0 and a λ̂ > 0 such

that (−λ̂)
n̂

n̂!
M (n̂)

(
λ̂
)

= 0. As λ̂ > 0, this impliesM (n̂)
(
λ̂
)

= 0. BecauseM (n̂) (λ) is continuously

differentiable but cannot cross zero, it must be the case that its first derivative is zero in λ = λ̂ as
well, i.e. M (n̂+1)

(
λ̂
)

= 0. By induction, it then follows that all higher derivatives must equal zero

in this point, M (n)
(
λ̂
)

= 0 for all n ∈ {n̂, n̂+ 1, n̂+ 2, . . .}.

With all of its derivatives being zero in λ̂, the analytic function M (n̂) (λ) must be zero in
a neighborhood around λ̂. Again by induction, we therefore obtain that M (n) (λ) = 0 for all
n ∈ {n̂, n̂+ 1, n̂+ 2, . . .} and all λ. In that case,

n̂−1∑
i=0

Pi (λ) =
n̂−1∑
i=0

(−λ)i

i!
M (i) (λ) = 1,

which is a differential equation with solution M (λ) = 1 +
∑n̂−1

i=1 ciλ
i, for some coefficients

ci. Because M ′ (λ) < 0 rules out the possibility that M (λ) is a constant, one obtains that
limλ→∞ |M (λ)| = +∞.

This contradicts the requirement that M (λ) ∈ [0, 1] for all λ. Hence, it must be true that
(−λ)n

n!
M (n) (λ) > 0 for all n and all λ. This immediately implies that (−λ)n

n!
M (n) (λ) < 1, for all n

and all λ, which completes the proof. �

Note that restriction (ii′) implies restriction (v) and (vi), which are therefore redundant. Hence,
the set of feasible M can be characterized by restrictions (i), (ii′), (iii), and (iv).

4 Independence

Another well-known property of the urn-ball meeting technology is that Pn (λ) does not only
represent the distribution of the total number of buyers at each seller, but also the distribution of
the number of competitors a buyer faces when arriving at a seller. In other words, a buyer who
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meets with a seller has no effect on the distribution (and thus the expectation) of the number of
other buyers at the same seller. We will say that a meeting technology that satisfies this property
exhibits “independence”.

Formally, independence means Qn (λ) = (1−Q0 (λ))Pn−1 (λ) for all λ and n ∈ N1. This
property can be shown to be satisfied if and only if the meeting technology is of the following
form:4

Pn (λ) = e−(1−Q0(λ))λ [(1−Q0 (λ))λ]n

n!
. (12)

The following lemma establishes that independence is neither a necessary nor a sufficient condition
for invariance.

Lemma 1. Invariance does not imply independence and independence does not imply invariance.

To see why invariance does not imply independence, consider the geometric technology. As
we established in the main text, this meeting technology is invariant. However, this technology is
not independent, as the fact that an individual buyer meets with a seller changes the probability
distribution over the number of other buyers who meet with the seller. In particular, when a buyer
meets with a seller, he learns that the seller has only met with buyers thus far, which increases the
expected number of other buyers that this seller will ultimately meet; that is, the conditional mean
of the queue length is greater than the unconditional mean.

Finally, to understand why independence does not imply invariance, consider the following
variation on the urn-ball technology, in which a longer queue length reduces each buyers’ chances
of meeting a seller. That is,5

Pn (λ) = e−Φ(λ)λ [Φ (λ)λ]n

n!
, (13)

where Φ (λ) : [0,∞) → [0, 1] satisfies Φ (0) = 1 and Φ′ (λ) < 0. To understand this meeting
technology, imagine that buyers and sellers in each sub-market begin on separate islands. The
measure σ of sellers each send a boat to transport the measure β of buyers, so that each boat
carries λ = β/σ buyers to the sellers’ island. However, each boat sinks with probability 1−Φ(λ),
so that heavier boats are more likely to sink. Then, the buyers that arrive safely at the sellers’ island
randomly select a seller, as in the urn-ball specification.

Since the probability of each boat’s safe passage depends on the ratio of buyers to sellers in
the sub-market, this technology does not satisfy the requirements of non-rivalry, and hence is not
invariant. However, once buyers arrive, the meeting process ensues according to the standard urn-

4By the consistency requirement and induction, the condition implies that Pn (λ) = 1
n!λ

n [1−Q0 (λ)]
n
P0 (λ) .

Since Pn (λ) is a probability distribution, we must have 1 =
∑∞

0
1
n!λ

n [1−Q0 (λ)]
n
P0 (λ) = eλ[1−Q0(λ)]P0 (λ) .

Solving the second equation for P0 (λ) and substituting the solution into the first equation yields (12). Conversely,
equation (12) implies the independence condition immediately.

5See Kaas (2010) for a related example of this class of meeting technologies.
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ball technology, so that the arrival of an individual buyer has no effect on the distribution of other
buyers to arrive. Hence, this meeting process satisfies independence.6
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